Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.040
Filtrar
1.
J Photochem Photobiol B ; 254: 112903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608335

RESUMO

This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ±â€¯SD diameter, polydispersity index, and zeta potential were 134 ±â€¯1 nm, -16.1 ±â€¯0.9, and 0.220 ±â€¯0.013, respectively, for CVs and 172 ±â€¯3 nm, -16.4 ±â€¯1.1, and 0.167 ±â€¯0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 µM (CVs) and 0.51 µM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Colangiocarcinoma/tratamento farmacológico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Compostos Organometálicos/farmacologia , Compostos de Zinco , Linhagem Celular Tumoral
2.
J Photochem Photobiol B ; 253: 112863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457992

RESUMO

Phthalocyanines have been described as effective photosensitizers for photodynamic therapy and are therefore, being studied for their biomedical applications. The metalation of photosensitizers can improve their photodynamic therapy potential. Here, we focus on the biological properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II) (ZnPc(αEG4)2) and demonstrate its exceptional anticancer activity upon light stimulation to kill preferentially cancer cells with a start of efficiency at 10 pM. Indeed, in this work we highlighted the high selectivity of ZnPc(αEG4)2 for cancer cells compared with healthy ones and we establish its mechanism of action, enabling us to conclude that ZnPc(αEG4)2 could be a powerful tool for cancer therapy.


Assuntos
Indóis , Compostos Organometálicos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Zinco , Compostos Organometálicos/farmacologia , Compostos de Zinco
3.
Int J Pharm ; 655: 124004, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38492899

RESUMO

Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.


Assuntos
Isoindóis , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Micelas , Polímeros , Fotoquimioterapia/métodos , Compostos de Zinco , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Receptores ErbB , Linhagem Celular Tumoral
4.
Dalton Trans ; 53(11): 4984-5000, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38406993

RESUMO

In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 µM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Cimenos , Compostos Organometálicos , Rutênio , Humanos , Complexos de Coordenação/química , Linhagem Celular Tumoral , Ligantes , Cloretos/química , Antineoplásicos/química , DNA/química , Albumina Sérica Humana , Água , Rutênio/farmacologia , Rutênio/química , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química
5.
ACS Chem Biol ; 19(3): 725-735, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340055

RESUMO

With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.


Assuntos
Heme Oxigenase-1 , Compostos Organometálicos , Humanos , Heme Oxigenase-1/metabolismo , Células HeLa , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Organometálicos/farmacologia , Técnicas de Cultura de Células , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo
6.
Chem Commun (Camb) ; 60(15): 2098-2101, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295368

RESUMO

We report a specific lysosome targeted light-responsive CO-releasing molecule (Lyso-CORM). Lyso-CORM is very stable under dark conditions. CO and singlet oxygen (1O2) generation was effectively triggered under one photon and two photon excitation (800 nm) conditions. The cytotoxicity results demonstrated that Lyso-CORM showed good phototoxicity due to the synergistic effect of CO and 1O2 release, and its good biocompatibility, negligible dark toxicity and specific lysosome targeting make Lyso-CORM a potent candidate for phototherapeutic applications.


Assuntos
Compostos Organometálicos , Oxigênio Singlete , Luz , Fótons , Lisossomos , Monóxido de Carbono , Compostos Organometálicos/farmacologia
7.
Bioorg Chem ; 143: 106986, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995641

RESUMO

Photodynamic therapy (PDT) has emerged as a highly efficacious therapeutic modality for malignant tumors owing to its non-invasive property and minimal adverse effects. However, the pervasive hypoxic microenvironment within tumors significantly compromises the efficacy of oxygen-dependent PDT, posing a formidable challenge to the advancement of high-efficiency PDT. Here, we developed a nanostructured photosensitizer (PS) assembled by cationic and anionic zinc phthalocyanines to load oxygen-throttling drug atovaquone (ATO), which was subsequently coated with polydopamine to obtain the final product ATO/ZnPc-CA@DA. ATO/ZnPc-CA@DA exhibited excellent stability, particularly in the blood milieu. Interestingly, the acidic microenvironment can trigger drug release from ATO/ZnPc-CA@DA, leading to a significant enhancement in fluorescence and an augmented generation of reactive oxygen species (ROS). ATO/ZnPc-CA@DA can induce synergistic cytotoxicity of PS and ATO, and significantly enhance the killing ability against tumor cells under hypoxic conditions. The mechanism underlying cytotoxicity of ATO/ZnPc-CA@DA was demonstrated to be associated with augmented cell apoptosis, disruption of mitochondrial membrane potential, diminished ATP production, heightened intracellular ROS generation, and reduced intracellular oxygen consumption. The animal experiments indicated that ATO/ZnPc-CA@DA possessed enhanced tumor targeting capability, along with a reduction in PS distribution within normal organs. Furthermore, ATO/ZnPc-CA@DA exhibited enhanced inhibitory effect on tumor growth and caused aggravated damage to tumor tissue. The construction strategy of nanostructured PS and the synergistic antitumor principle of combined oxygen-throttling drugs can be applied to other PSs, thereby advancing the development of photodynamic antitumor therapy and promoting the clinical translation.


Assuntos
Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Preparações de Ação Retardada , Linhagem Celular Tumoral , Fluorescência , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Isoindóis , Oxigênio , Compostos Organometálicos/farmacologia
8.
J Pharm Sci ; 113(2): 463-470, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852536

RESUMO

Photodynamic therapy (PDT) is a potential treatment strategy for melanoma. As a second-generation photosensitizer, Zinc phthalocyanine (ZnPc) has many advantages for anti-tumor PDTs, such as strong absorption in the red and near infrared regions, high photo and chemical stability, etc. However, ZnPc has a poor water solubility and is apt to aggregate due to the π-π interaction between molecules, which limits its applications. In this study, various solvents and surfactants were screened for dissolving ZnPc and preparing ZnPc@SDC-TPGS micelle and thermosensitive in situ gel. After the cytotoxic effects of thermosensitive gels on PDT were tested, the antitumor effects on PDT of them in mice by intratumoral injection were evaluated, including body weight, and tumor weight, volume and morphology. The cell death pathway and the relationship of reactive oxygen species yield with apoptotic rate of tumor cells induced by ZnPc in situ gel were investigated. The results were that N-methyl-pyrrolidone (NMP) mixed with 2 % SDC and aqueous solution containing 2 % TPGS and 2 % SDC were used to synthesize ZnPc@SDC-TPGS micelle and the thermosensitive in situ gel. The cytotoxic effects of thermosensitive gels showed good tumor suppression of ZnPc@SDC-TPGS in situ gel and no toxicity of the blank gel. Intratumoral injection in situ gel containing 3 µg ZnPc under irradiation demonstrated good tumor inhibition in mice with melanoma. Apoptosis has been established as the primary pathway of cell death, and the production of reactive oxygen species (ROS) plays a crucial role in cellular apoptosis induced by ZnPc@SDC-TPGS in situ gel. In conclusion, the intratumoral injection of ZnPc@SDC-TPGS thermosensitive in situ gel provides a promising local treatment option for melanoma.


Assuntos
Antineoplásicos , Isoindóis , Melanoma , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Animais , Melanoma/tratamento farmacológico , Micelas , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Injeções Intralesionais , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Géis
9.
Birth Defects Res ; 116(1): e2284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158745

RESUMO

INTRODUCTION: Seven gadolinium-based contrast agents (GBCAs), four linear and three macrocyclic, were evaluated for potential effects on development, including behavior of juvenile CD-1 mice. METHODS: The GBCAs were administered via intravenous injection once daily on postnatal day (PND) 9, 12, 15, 18, and 21 (PND 1 was the day of delivery) at doses up to twice the human equivalent clinical dose (i.e., 0.63 mmol Gd/kg for gadoxetate disodium and 2.5 mmol Gd/kg for the other GBCAs). Mice were bled for evaluation of exposure (plasma) to gadolinium (Gd) on PND 9, 12, and 70. At scheduled euthanasia, the liver, spleen, brain, skin (dorsal surface), bone (left femur), and kidneys were excised from up to six mice/sex/group on PND 10, 22, or 70 for the determination of Gd levels and histopathological analysis. All mice were monitored for toxicity, growth and survival, sexual maturation, and behavior. CONCLUSION: Gd was quantifiable in the brain tissues with levels declining over time. There was no long-term effect on the growth and development for mice exposed to any of the GBCAs. There was no impact on neurodevelopment as assessed by brain histology and validated neurobehavioral tests, including a functional observational battery, motor activity, and learning and memory as evaluated in the Morris water maze. For all GBCAs, the highest dose tested represented the no-observable-adverse-effect level in juvenile mice.


Assuntos
Meios de Contraste , Compostos Organometálicos , Camundongos , Humanos , Animais , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Compostos Organometálicos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo
10.
J Am Chem Soc ; 146(1): 849-857, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134050

RESUMO

Phthalocyanine photosensitizers (PSs) have shown promise in fluorescence imaging and photodynamic therapy (PDT) of malignant tumors, but their practical application is limited by the aggregation-induced quenching (AIQ) and inherent photobleaching of PSs. Herein, we report the synthesis of a two-dimensional nanoscale covalent organic framework (nCOF) with staggered (AB) stacking of zinc-phthalocyanines (ZnPc), ZnPc-PI, for fluorescence imaging and mitochondria-targeted PDT. ZnPc-PI isolates and confines ZnPc PSs in the rigid nCOF to reduce AIQ, improve photostability, enhance cellular uptake, and increase the level of reactive oxygen species (ROS) generation via mitochondrial targeting. ZnPc-PI shows efficient tumor accumulation, which allowed precise tumor imaging and nanoparticle tracking. With high cellular uptake and tumor accumulation, intrinsic mitochondrial targeting, and enhanced ROS generation, ZnPc-PI exhibits potent PDT efficacy with >95% tumor growth inhibition on two murine colon cancer models without causing side effects.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Humanos , Animais , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/uso terapêutico , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Isoindóis , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Mitocôndrias , Linhagem Celular Tumoral
11.
Comput Biol Med ; 167: 107657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931525

RESUMO

Apoptosis is regulated by the BCL-2 family, which includes the anti-apoptotic and pro-apoptotic proteins (Bax, Bok, Bak, etc.). These proteins often interact in dimers and act as apoptotic switches. Anti-apoptotic proteins, such as BCL-2, block the functions of these pro-apoptotic proteins. The pro-apoptotic and anti-apoptotic protein-protein interactions must be inhibited to prevent tumor cells from escaping apoptosis. This method has been used to develop anticancer drugs by inhibiting BCL-2 with both natural and synthetic compounds. Metal-containing compounds were used as pharmaceuticals for human cancer patients for a long time, and cisplatin was the first candidate of this class. Drug design, however, needs to pay more attention to metal complexes. We have studied the X-ray crystal structure of the BCL-2 protein in detail and identified the hydrophobic nature of the site with two less solvent-accessible sites. Based on the hydrophobic nature of the compounds, 74 organometallic compounds with X-ray crystallographically characterized bioactivity (including anticancer activity) were selected from the Cambridge crystallographic database. For testing, molecular docking was used to determine which compound was most effective against the BCL-2 protein. Organometallic compounds (benzene)-chloro-(1-{[(9H-fluoren-2-yl)imino]methyl}naphthalen-2-olato)-ruthenium (2), (1-((1,1'-biphenyl)-4-yl)-2,3,4,5-tetramethylcyclopentadienyl)-chloro-(4,4'-dimethyl-2,2'-bipyridine)-rhodium hexafluorophosphate (37), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-rhodium tetrahydrate (46), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-iridium (47) etc are found to be important compounds in this study. The capability of different types of complex interactions was identified using Hirshfeld surface analysis of the complexes. A NCI plot was conducted to understand the nature of the interaction between complex amino acids and active-site amino acids. A DFT study was conducted to examine the stability and chemical reactivity of the selected complexes. Using this study, one suitable hydrophobic lead anti-cancer organometallic pharmaceutical was found that binds at the less solvent-accessible hydrophobic site of BCL-2.


Assuntos
Compostos Organometálicos , Ródio , Humanos , Proteína X Associada a bcl-2/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Compostos Organometálicos/farmacologia , Aminoácidos , Solventes , Butanos
12.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003398

RESUMO

Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.


Assuntos
Artrite , Carnosina , Compostos Organometálicos , Humanos , Zinco/farmacologia , Carnosina/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Zinco/farmacologia , Proteínas de Ciclo Celular/farmacologia , Cartilagem
13.
Molecules ; 28(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37894695

RESUMO

KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [67Ga]KP46 and [68Ga]KP46, compared with [68Ga]gallium acetate, were used for logP measurements, in vitro cell uptake studies in A375 melanoma cells, and in vivo imaging in mice bearing A375 tumour xenografts up to 48 h after intravenous (tracer level) and oral (tracer and bulk) administration. 68Ga was more efficiently accumulated in A375 cells in vitro when presented as [68Ga]KP46 than as [68Ga]gallium acetate, but the reverse was observed when intravenously administered in vivo. After oral administration of [68/67Ga]KP46, absorption of 68Ga and 67Ga from the GI tract and delivery to tumours were poor, with the majority excreted in faeces. By 48 h, low but measurable amounts were accumulated in tumours. The distribution in tissues of absorbed radiogallium and octanol extraction of tissues suggested trafficking as free gallium rather than as KP46. We conclude that KP46 likely acts as a slow releaser of gallium ions which are inefficiently absorbed from the GI tract and trafficked to tissues, including tumour and bone.


Assuntos
Antineoplásicos , Gálio , Neoplasias , Compostos Organometálicos , Humanos , Animais , Camundongos , Radioisótopos de Gálio/uso terapêutico , Gálio/farmacologia , Compostos Organometálicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Acetatos/uso terapêutico
14.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858311

RESUMO

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Humanos , Complexos de Coordenação/farmacologia , Vanádio/farmacologia , Compostos Organometálicos/farmacologia , Transferrina , Albuminas , Hipóxia , Catecóis/farmacologia
15.
Dalton Trans ; 52(33): 11679-11690, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552495

RESUMO

Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Compostos Organometálicos , Rutênio , Humanos , Feminino , Compostos Organometálicos/farmacologia , Compostos Organometálicos/metabolismo , Rutênio/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Tolueno , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia
16.
Dalton Trans ; 52(34): 11859-11874, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37464882

RESUMO

Antimitotic agents are among the most important drugs used in anticancer therapy. Kinesin spindle protein (KSP) was proposed as a promising target for new antimitotic drugs. Herein, we report the synthesis of Ru, Os, Rh, and Ir half-sandwich complexes with the KSP inhibitor ispinesib and its (S)-enantiomer. Conjugation of the organometallic moiety with ispinesib and its (S)-enantiomer resulted in a significantly increased cytotoxicity of up to 5.6-fold compared to the parent compounds, with IC50 values in the nanomolar range. The most active derivatives were the ispinesib Ru and Rh conjugates which were able to generate reactive oxygen species (ROS), which may at least partially explain their high cytotoxicity. At the same time, the Os and Ir derivatives acted as KSP inhibitors with no effects on ROS generation.


Assuntos
Antimitóticos , Antineoplásicos , Compostos Organometálicos , Antimitóticos/farmacologia , Espécies Reativas de Oxigênio , Quinazolinas , Benzamidas/metabolismo , Benzamidas/farmacologia , Compostos Organometálicos/farmacologia
17.
Curr Pharm Des ; 29(22): 1791-1799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518995

RESUMO

AIMS: The fight against cancer is an active research topic that combines several disciplines to find suitable agents to treat various tumours. BACKGROUND: Following cisplatin, organometallic compounds, including titanocene derivatives, have been tested as antitumoral agents. However, key issues still need to be addressed in metallodrug chemotherapy relating to solubility, stability, and dosage. Mesoporous silica nanoparticles, being low toxic biocompatible materials with high loading capacity, are ideal candidates to overcome these problems. OBJECTIVE: This study aimed to prepare and structurally characterize titanocene functionalized mesoporous silica nanoparticles and evaluate their cytotoxic activity against cancer cells. METHODS: The preparation of titanocene functionalized mesoporous silica nanoparticles was achieved by synthetic protocols, involving either grafting or tethering. Characterization was carried out using standard techniques, FT-IR, XRD, XRF, TEM, and BET. The titanocene functionalized materials were studied as antitumoral agents in the breast cancer lines MCF-7 and MDA-MB-231. RESULTS: The functionalized MSN showed promising antitumoral activity against cells lines MCF-7 and MDAMB- 231 up to 9 times more than titanocene alone. CONCLUSION: This study reported the potential of titanocene-functionalized mesoporous silica nanoparticles in future chemotherapeutic actions.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Compostos Organometálicos , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/uso terapêutico , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Nanopartículas/química , Dióxido de Silício/química , Porosidade
18.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511019

RESUMO

The application of gaseous signaling molecules like NO, H2S or CO to overcome the multidrug resistance in cancer treatment has proven to be a viable therapeutic strategy. The development of CO-releasing molecules (CORMs) in a controlled manner and in targeted tissues remains a challenge in medicinal chemistry. In this paper, we describe the design, synthesis and chemical and enzymatic stability of a novel non-metal CORM (1) able to release intracellularly CO and, simultaneously, facilitate fluorescent degradation of products under the action of esterase. The toxicity of 1 against different human cancer cell lines and their drug-resistant counterparts, as well as the putative mechanism of toxicity were investigated. The drug-resistant cancer cell lines efficiently absorbed 1 and 1 was able to restore their sensitivity vs. chemotherapeutic drugs by causing a CO-dependent mitochondrial oxidative stress that culminated in mitochondrial-dependent apoptosis. These results demonstrate the importance of CORMs in cases where conventional chemotherapy fails and thus open the horizons towards new combinatorial strategies to overcome multidrug resistance.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Humanos , Monóxido de Carbono/farmacologia , Monóxido de Carbono/química , Carvão Vegetal , Mitocôndrias/metabolismo , Apoptose , Transdução de Sinais , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química
19.
J Med Chem ; 66(15): 10497-10509, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498080

RESUMO

Zn1 and Zn2 are Zn-based complexes that activate the immunogenic cell death (ICD) effect by Ca2+-mediated endoplasmic reticulum stress (ERS) and mitochondrial dysfunction. Compared with Zn1, Zn2 effectively caused reactive oxidative species (ROS) overproduction in the early phase, leading to ERS response. Severe ERS caused the release of Ca2+ from ER to cytoplasm and further to mitochondria. Excessive Ca2+ in mitochondria triggered mitochondrial dysfunction. The damage-associated molecular patterns (DAMPs) of CRT, HMGB1, and ATP occurred in T-24 cells exposed to Zn1 and Zn2. The vaccination assay demonstrated that Zn1 and Zn2 efficiently suppressed the growth of distant tumors. The elevated CD8+ cytotoxic T cells and decreased Foxp3+ cells in vaccinated mice supported our conclusion. Moreover, Zn1 and Zn2 improved the survival rate of mice compared with oxaliplatin. Collectively, our findings provided a new design strategy for a zinc-based ICD inducer via ROS-induced ERS and mitochondrial Ca2+ overload.


Assuntos
Antineoplásicos , Zinco , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Morte Celular Imunogênica , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
20.
Biochem Pharmacol ; 214: 115642, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321416

RESUMO

Carbon monoxide (CO) is an endogenously produced gaseous signaling molecule with demonstrated pharmacological effects. In studying CO biology, three delivery forms have been used: CO gas, CO in solution, and CO donors of various types. Among the CO donors, four carbonyl complexes with either a transition metal ion or borane (BH3) (termed CO-releasing molecules or CORMs) have played the most prominent roles appearing in over 650 publications. These are CORM-2, CORM-3, CORM-A1, and CORM-401. Intriguingly, there have been unique biology findings that were only observed with these CORMs, but not CO gas; yet these properties were often attributed to CO, raising puzzling questions as to why CO source would make such a fundamental difference in terms of CO biology. Recent years have seen a large number of reports of chemical reactivity (e.g., catalase-like activity, reaction with thiol, and reduction of NAD(P)+) and demonstrated CO-independent biological activity for these four CORMs. Further, CORM-A1 releases CO in an idiosyncratic fashion; CO release from CORM-401 is strongly influenced or even dependent on reaction with an oxidant and/or a nucleophile; CORM-2 mostly releases CO2, not CO, after a water-gas shift reaction except in the presence of a strong nucleophile; and CORM-3 does not release CO except in the presence of a strong nucleophile. All these beg the question as to what constitutes an appropriate CO donor for studying CO biology. This review critically summarizes literature findings related to these aspects, with the aim of helping result interpretation when using these CORMs and development of essential criteria for an appropriate donor for studying CO biology.


Assuntos
Boranos , Compostos Organometálicos , Compostos Organometálicos/farmacologia , Boranos/química , Boranos/farmacologia , Biologia , Monóxido de Carbono/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...